Live Course Module: SAS Course for Data Science
Total Duration: 36 Hours (6 Weeks)
Week 1: Introduction to SAS & Data Science Basics (6 hrs)
-
Introduction to Data Science and SAS (1 hr)
-
Role of SAS in data science ecosystem
-
Comparison with Python/R
-
SAS software interface & environment
-
-
SAS Environment & Tools (2 hrs)
-
SAS Studio & Enterprise Guide
-
Libraries & datasets
-
Understanding data types & variables
-
-
Basics of SAS Programming (3 hrs)
-
SAS syntax rules
-
Data step & Proc step
-
Import/export datasets (Excel, CSV, databases)
-
Week 2: Data Handling & Manipulation (6 hrs)
-
Reading and Writing Data (2 hrs)
-
Infile & Input statements
-
Proc Import/Export
-
Dataset formats
-
-
Data Cleaning & Transformation (2 hrs)
-
Handling missing values
-
Conditional statements (IF-THEN-ELSE)
-
Functions for text, numeric & dates
-
-
Data Integration & Subsetting (2 hrs)
-
Merge & concatenate datasets
-
Sorting & filtering
-
Keep & Drop statements
-
Week 3: Exploratory Data Analysis (EDA) with SAS (6 hrs)
-
Descriptive Statistics (2 hrs)
-
PROC MEANS, PROC FREQ, PROC UNIVARIATE
-
Summarizing data
-
-
Data Visualization in SAS (2 hrs)
-
PROC SGPLOT, PROC SGSCATTER
-
Histograms, scatterplots, boxplots
-
-
Data Summarization (2 hrs)
-
PROC TABULATE, PROC REPORT
-
Pivot table style reporting
-
Week 4: Advanced Data Preparation (6 hrs)
-
Advanced Functions & Arrays (2 hrs)
-
Math & string functions
-
Arrays in SAS
-
-
Data Restructuring (2 hrs)
-
PROC TRANSPOSE
-
Reshaping data for ML
-
-
Macros & Automation (2 hrs)
-
Macro variables
-
Writing simple macros
-
Week 5: Statistical Analysis & Predictive Modeling (6 hrs)
-
Basic Statistical Tests (2 hrs)
-
PROC TTEST, PROC ANOVA, PROC CORR
-
Hypothesis testing basics
-
-
Regression Analysis (2 hrs)
-
PROC REG for linear regression
-
PROC LOGISTIC for classification
-
-
Machine Learning Basics in SAS (2 hrs)
-
Decision Trees (PROC HPSPLIT)
-
Clustering (PROC FASTCLUS)
-
Week 6: Case Studies & Project (6 hrs)
-
Case Study 1: Customer Segmentation (2 hrs)
-
Clustering with real-world dataset
-
-
Case Study 2: Predictive Modeling (2 hrs)
-
Logistic regression for classification problem
-
-
Capstone Project & Presentation (2 hrs)
-
End-to-end workflow: Data import → Cleaning → EDA → Modeling → Reporting
-
Expected Outcomes
-
Hands-on experience with SAS programming for data science
-
Ability to clean, manipulate & visualize data
-
Build predictive & statistical models in SAS
-
Apply SAS in real-world case studies for data-driven decision making
Reviews
There are no reviews yet.